Tuesday 16 June 2015

                                     

                                    HARDWARE

                   Computer hardware (usually simply called hardware when a computing context is implicit) is the collection of physical elements that constitutes a computer system. Computer hardware is the physical parts or components of a computer, such as the monitormouse,keyboardcomputer data storagehard disk drive (HDD), system unit (graphic cards, sound cards, memory, motherboard and chips), and so on, all of which are physical objects that can be touched (that is, they are tangible). In contrast, software is instructions that can be stored and run by hardware.


Computer hardware is the collection of physical parts of a computer system. This includes the computer case, monitor, keyboard, and mouse. It also includes all the parts inside the computer case, such as the hard disk drive, motherboard, video card, and many others. Computer hardware is what you can physically touch.

Definitions

A computer system consists of two major elements: hardware and software. Computer hardware is the collection of all the parts you can physically touch. Computer software, on the other hand, is not something you can touch. Software is a set of instructions for a computer to perform specific operations. You need both hardware and software for a computer system to work.
Some hardware components are easy to recognize, such as the computer case, keyboard, and monitor. However, there are many different types of hardware components. In this lesson, you will learn how to recognize the different components and what they do.

Types of Computers

Before looking at the various components, it is useful to distinguish between two different types of computers: desktop computers and laptop computers. A desktop computer consists of a computer case and a separate monitor, keyboard, and mouse. As the name suggests, this type of computer is typically placed on a desk and is not very portable.

desktop computer

Hardware Components
Let's start with the computer case. This is the metal enclosure that contains many of the other hardware components. It comes in various shapes and sizes, but a typical tower model is between 15-25 inches high. Want to know what's inside? Okay, go get a screwdriver and let's open it up. Seriously, if you are really into computers, the best way to learn is to actually get hands-on. To save us some time, however, have a look at this desktop computer case. A computer enthusiast replaced the metal side panel with a transparent one, so we can have a look inside.
Although that photo looks pretty cool, it is a bit hard to recognize the individual components, especially with all the connecting wires running through it. This figure shows a more schematic version of a desktop computer, which makes it easier to point out the essential hardware components.

Computer Hardware Definition

                 Hardware is a comprehensive term for all of the physical parts of a computer, as distinguished from the data it contains or operates on, and the software that provides instructions for the hardware to accomplish tasks. The boundary between hardware and software is slightly blurry - firmware is software that is "built-in" to the hardware, but such firmware is usually the province of computer programmers and computer engineers in any case and not an issue that computer users need to concern themselves with.
A typical computer (Personal Computer, PC) contains in a desktop or tower case the following parts:
  • Motherboard which holds the CPU, main memory and other parts, and has slots for expansion cards
  • power supply - a case that holds a transformer, voltage control and fan
  • storage controllers, of IDE, SCSI or other type, that control hard disk , floppy disk, CD-ROM and other drives; the controllers sit directly on the motherboard (on-board) or on expansion cards
  • graphics controller that produces the output for the monitor
  • the hard disk, floppy disk and other drives for mass storage
  • interface controllers (parallel, serial, USB, Firewire) to connect the computer to external peripheral devices such as printers or scanners

Abbreviated as HWHardware is best described as any physical component of a computer system that contains a circuit boardICs, or other electronics. A perfect example of hardware is the screen on which you are viewing this page. Whether it be a computer monitortablet or smartphone; it's hardware.
Without any hardware, your computer would not exist, and software could not be used. The picture is a Logitech webcam, an example of an external hardware peripheral. This hardware device allows users to take videos or pictures and transmit them over the Internet.
Below is a list of external hardware and internal hardware that may be found with a computer.

External hardware examples

Internal hardware examples

Your PC (Personal Computer) is a system, consisting of many components. Some of those components, like Windows XP, and all your other programs, are software. The stuff you can actually see and touch, and would likely break if you threw it out a fifth-story window, is hardware.

Not everybody has exactly the same hardware. But those of you who have a desktop system, like the example shown in Figure 1, probably have most of the components shown in that same figure. Those of you with notebook computers probably have most of the same components. Only in your case the components are all integrated into a single book-sized portable unit.
Figure 1
The system unit is the actual computer; everything else is called a peripheral device. Your computer's system unit probably has at least one floppy disk drive, and one CD or DVD drive, into which you can insert floppy disks and CDs. There's another disk drive, called the hard disk inside the system unit, as shown in Figure 2. You can't remove that disk, or even see it. But it's there. And everything that's currently "in your computer" is actually stored on that hard disk. (We know this because there is no place else inside the computer where you can store information!).
Figure 2
The floppy drive and CD drive are often referred to as drives with removable media or removable drives for short, because you can remove whatever disk is currently in the drive, and replace it with another. Your computer's hard disk can store as much information as tens of thousands of floppy disks, so don't worry about running out of space on your hard disk any time soon. As a rule, you want to store everything you create or download on your hard disk. Use the floppy disks and CDs to send copies of files through the mail, or to make backup copies of important items.

Random Access Memory (RAM)

There's too much "stuff" on your computer's hard disk to use it all at the same time. During the average session sitting at the computer, you'll probably use only a small amount of all that's available. The stuff you're working with at any given moment is stored in random access memory (often abbreviated RAM, and often called simply "memory"). The advantage using RAM to store whatever you're working on at the moment is that RAM is very fast. Much faster than any disk. For you, "fast" translates to less time waiting and more time being productive.

So if RAM is so fast, why not put everything in it? Why have a hard disk at all? The answer to that lies in the fact that RAM is volatile. As soon as the computer is shut off, whether intentionally or by an accidental power outage, every thing in RAM disappears, just as quickly as a light bulb goes out when the plug is pulled. So you don't want to rely on RAM to hold everything. A disk, on the other hand, holds its information whether the power is on or off.

The Hard Disk

All of the information that's "in your computer", so to speak, is stored on your computer's hard disk. You never see that actual hard disk because it's sealed inside a special housing and needs to stay that way. Unlike RAM, which is volatile, the hard disk can hold information forever -- with or without electricity. Most modern hard disks have tens of billions of bytes of storage space on them. Which, in English, means that you can create, save, and download files for months or years without using up all the storage space it provides.
In the unlikely event that you do manage to fill up your hard disk, Windows will start showing a little message on the screen that reads "You are running low on disk space" well in advance of any problems.  In fact, if that message appears, it won't until you're down to about 800 MB of free space. And 800 MB of empty space is equal to about 600 blank floppy disks. That's still plenty of room!

The Mouse

Obviously you know how to use your mouse, since you must have used it to get here. But let's take a look at the facts and buzzwords anyway. Your mouse probably has at least two buttons on it. The button on the left is called the primary mouse button, the button on the right is called the secondary mouse button or just the right mouse button. I'll just refer to them as the left and right mouse buttons. Many mice have a small wheel between the two mouse buttons, as illustrated in Figure 3.
Figure 3
 
The idea is to rest your hand comfortably on the mouse, with your index finger touching (but not pressing on) the left mouse button. Then, as you move the mouse, the mouse pointer (the little arrow on the screen) moves in the same direction. When moving the mouse, try to keep the buttons aimed toward the monitor -- don't "twist" the mouse as that just makes it all the harder to control the position of the mouse pointer.
If you find yourself reaching too far to get the mouse pointer where you want it to be on the screen, just pick up the mouse, move it to where it's comfortable to hold it, and place it back down on the mousepad or desk. The buzzwords that describe how you use the mouse are as follows:
  • Point: To point to an item means to move the mouse pointer so that it's touching the item.
  • Click: Point to the item, then tap (press and release) the left mouse button.
  • Double-click: Point to the item, and tap the left mouse button twice in rapid succession - click-click as fast as you can.
  • Right-click: Point to the item, then tap the mouse button on the right.
  • Drag: Point to an item, then hold down the left mouse button as you move the mouse. To drop the item, release the left mouse button.
  • Right-drag: Point to an item, then hold down the right mouse button as you move the mouse. To drop the item, release the right mouse button.

The Keyboard

Like the mouse, the keyboard is a means of interacting with your computer. You really only need to use the keyboard when you're typing text. Most of the keys on the keyboard are laid out like the keys on a typewriter. But there are some special keys like Esc (Escape), Ctrl (Control), and Alt (Alternate). There are also some keys across the top of the keyboard labeled F1, F2, F3, and so forth. Those are called the function keys, and the exact role they play depends on which program you happen to be using at the moment.
Most keyboards also have a numeric keypad with the keys laid out like the keys on a typical adding machine. If you're accustomed to using an adding machine, you might want to use the numeric keypad, rather than the numbers across the top of the keyboard, to type numbers. It doesn't really matter which keys you use. The numeric keypad is just there as a convenience to people who are accustomed to adding machines.
Figure 4
Most keyboards also contain a set of navigation keys. You can use the navigation keys to move around around through text on the screen. The navigation keys won't move the mouse pointer. Only the mouse moves the mouse pointer.
On smaller keyboards where space is limited, such as on a notebook computer, the navigation keys and numeric keypad might be one in the same. There will be a Num Lock key on the keypad. When the Num Lock key is "on", the numeric keypad keys type numbers. When the Num Lock key is "off", the navigation keys come into play. The Num Lock key acts as a toggle. Which is to say, when you tap it, it switches to the opposite state. For example, if Num Lock is on, tapping that key turns it off. If Num Lock is off, tapping that key turns Num Lock on.